Likelihood-based selection and sharp parameter estimation.

نویسندگان

  • Xiaotong Shen
  • Wei Pan
  • Yunzhang Zhu
چکیده

In high-dimensional data analysis, feature selection becomes one means for dimension reduction, which proceeds with parameter estimation. Concerning accuracy of selection and estimation, we study nonconvex constrained and regularized likelihoods in the presence of nuisance parameters. Theoretically, we show that constrained L(0)-likelihood and its computational surrogate are optimal in that they achieve feature selection consistency and sharp parameter estimation, under one necessary condition required for any method to be selection consistent and to achieve sharp parameter estimation. It permits up to exponentially many candidate features. Computationally, we develop difference convex methods to implement the computational surrogate through prime and dual subproblems. These results establish a central role of L(0)-constrained and regularized likelihoods in feature selection and parameter estimation involving selection. As applications of the general method and theory, we perform feature selection in linear regression and logistic regression, and estimate a precision matrix in Gaussian graphical models. In these situations, we gain a new theoretical insight and obtain favorable numerical results. Finally, we discuss an application to predict the metastasis status of breast cancer patients with their gene expression profiles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION

In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Analysis of Big Data

1 Theoretical foundation 2 1.1 Statistical models and parameter spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Likelihood-based estimation . . . . . . . ....

متن کامل

Pitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution

In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 107 497  شماره 

صفحات  -

تاریخ انتشار 2012